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Abstract

For a vector field in R 3, V ( x, y, z) , and a normalized direction vector,

(n 1, n 2, n3), an isodirection line is defined as the set of points satisfying

V(x, y, z) = (mn 1, mn 2, mn3), where m>O. An algorithm is presented

for constructing the isodirection line for a given direction over two- and

three-dimensional vector fields sampled over a curvilinear grid. An

array of isodirection lines constructed through a vector field provides a

visual image which captures the topology of the vector field. Critical

points of the vector field, where the magnitude of the vector vanishes, are

located as a consequence of the isodirection line construction.

Isodirection lines can also guide the placement of the initial points for

generating integral curves which add to the ability of the image to

characterize the topology of the vector field.

1. Introduction

Scientific visualization utilizes the pattern-recognition capabilities of the visual

sense to analyze much greater quantities of data than is possible with purely

numeric approaches [2]. The raw numeric data often is in the form of samples at

discrete locations arranged in a regular or irregular pattern. The data commonly

represents a scalar field, for which there is a single value for each sample point, or a

vector field, for which there is a vector for each sample point.

The methods used to visualize scalar fields are reasonably successful in displaying

the structure of the field. A range of colors can be used to represent a range of scalar
values. Whole two-dimensional scalar fields or surface subsets of three-dimensional

fields can be so colored to present an image in which regions of particular scalar

values can easily be distinguished from other regions.

Isoscalar contour lines are very useful for mapping the structure of two-dimensional

scalar fields. The utility of topographic maps for displaying elevation information

with elevation contour lines, for instance, is widely appreciated. Isoscalar surfaces
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are used in a number of scientific disciplines to display the structure of three-
dimensional scalar fields.

Various visualization methods are employed to gain an understanding of the

structure or topology of sampled vector fields. They range from simply drawing

directed line segments, representing the direction and magnitude of the vector at

each sampled point, to the exploration of integral manifolds by location and analysis

of the critical points in the vector field [4].

An isodirection line is a line or curve which connects vectors in the vector field which

are of the same direction. The visual image of a discrete number of isodirection lines

through a vector field maps the structure of the vector field much in the same way

that isoscalar contour lines or isoscalar surfaces map the structure of a scalar field.

A method for constructing isodirection lines from vector fields sampled at the

vertices of two- and three-dimensional curvilinear grids is presented here. A method

for the location of the critical points of a vector field, where the magnitude of the

vector vanishes, is a natural consequence ofisodirection line construction and is also

presented. The example data is drawn from the study of computational fluid

dynamics (CFD).

2. Background

A variety of techniques have been used to visualize the structure of sampled vector

fields common to the study of CFD [1, 4, 11 16]. Chief among them has been the use

of integral curves or surfaces, which are everywhere tangent to interpolated vector

samples [3, 4, 7, 8, 16]. The algorithms for the construction of integral curves or

surfaces through a sampled vector field solve initial value problems, where an initial

seed location in the vector field is designated and subsequent locations are found by

numerical integration. While these techniques can be effective, caution must be

used in the selection of step size and numerical integration method lest erroneous

results occur [ 14].

The effectiveness in showing the overall structure of the vector field with integral

curves or surfaces is dependant upon the location of the seed points. Interactive

placement of seed points with quick display of the resulting trace is one way of

constructing a useful image [ 1, 8].

Techniques for locating the critical points of vector fields have been combined with

visualizing integral curves and surfaces to depict the topology of vector fields [4, 5, 6,

7]. Critical point location and analysis is helpful in guiding the selection of locations

to begin integral curves and surfaces. Integral curves initiated near critical points

trace paths which depict important features of the flow [4, 5].

A method used to sketch approximate integral curves of analytic functions is the

method ofisoclines [19]. Given a differential equation:
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dx
- f(x,y)

dy

an isocline is a curve on which the slope f(x, y) of the vector field has a constant

value, c. Figure 1 shows a set of isoclines drawn with line segments indicating the

slope the isocline represents. Three integral curves are sketched everywhere

tangent to the inclination.

Y Integral curves

Isoclines _

X

Figure 1: Isoclines used to sketch integral curves.

The use ofisoclines to sketch out integral curves for analytic functions is indicative

of the usefulness of the isoclines to depict the basic structure of the analytic function.

A similar structure, termed an isotangent curve, has been used for computing two-

dimensional phase portraits for oriented textures[20].

The ability of isoclines to portray the structure of analytic functions in two

dimensions provides motivation for developing an algorithm for constructing similar

structures in sampled vector fields of two and three dimensions. An isodirection line

is just such a structure with direction rather than inclination as the characteristic of

interest. Two (opposite) directions are assimilated in an inclination.

An isoscalar surface of a three-dimensional scalar field is the set of points satisfying

f(x, y) = c for some constant value, c. The marching cubes algorithm [13] and its

variations [3, 11, 15, 22, 23] are probably the most widely used algorithms for

constructing isoscalar surfaces. One important feature of this algorithm is the

divide and conquer approach it takes, constructing surface fragments within one

cubical cell at a time. The collection of fragments over the entire grid forms the

isoscalar surface. This allows for the use of an arbitrary progression through the

data; the processing of subsequent cells is not dependant on the processing of prior

cells. Isodirection line construction employs a similar divide and conquer approach

using a subdivision of the curvilinear grid into triangles for two-dimensional grids

and tetrahedra for three-dimensional grids. Isodirection line segments are

constructed for each triangle or tetrahedra. A collection of these segments forms the

complete isodirection line.
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3. Two-dimensional Isodirection Line Construction

Construction of isodirection lines in a sampled vector field is similar to the

construction ofisoscalar contour lines in a sampled scalar field. Before we discuss

the construction of isodirection lines, let us examine an algorithm for construction of

isoscalar contours. Given a scalar field sampled over a curvilinear grid and a scalar

value, the steps for construction of a isoscalar contour are:

Step 1: Divide the curvilinear grid into triangular cells.

Step 2: Test if the desired scalar value is between the scalar values at the

vertices of each edge of each cell.

Step 3: If the desired scalar value is between the scalar values of the

vertices of a cell edge, use linear interpolation to find the location on

the cell edge which is of the desired scalar value. This location is an

edge - contour line intersection point.

Step 4: Draw a line between the edge - contour line intersections found in
each cell.

R=O.O

Q=4.0

P=2.0

Isoscalar R

Contour Line
for Scalar Value .

Q

Cell with Scalar Values
at Vertices

Cell with Isoscalar
Contour Line

Figure 2: Two-dimensional isoscalar contour line construction.

An example is illustrated in figure 2. A desired scalar value, 2.5, is found to be

between the scalar values for two edges of the triangular cell PQR with scalar values

2.0, 4.0, and 0.0, respectively. The location for 2.5 along the edge between P and Q is

found using linear interpolation. The resulting location corresponds to a cell edge -

contour line intersection point. An edge - contour line intersection is also located on

the edge between R and Q. Finally, the contour line is drawn connecting the two

edge - contour line intersections.

For a vector field in R 2, V(x, y) , and a normalized direction vector,

isodirection line is defined as the set of points satisfying V(x, y) =
where m > 0.

(n 1, n2), an

(mn 1, ran2),

The construction of an isodirection line follows a pattern similar to the construction

of an isoscalar contour. Given a vector field sampled over a two-dimensional
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curvilinear grid
are:

Step 1:
Step 2:

Step 3:

Step 4:

and a direction vector, the steps for construction ofa isodirection line

Divide the curvilinear grid into triangular cells.
Test if the desired direction is between the directions of the vectors
at the vertices of each edgeof each cell.
If the desired direction is between the directions of the vectors at the
vertices of a cell edge, use linear interpolation to find the location on
the cell edge which is of the desired direction. This location is an
edge - isodirection line intersection point.
Draw a line between the edge - isodirection line intersections found
in each cell.

One "betweeness" test for direction in step 2 translates the vectors at the vertices of

a cell edge to a common tail with the desired direction vector. An order is determined

where the vectors from the vertices of the cell edge form an angle of less than 180

degrees. If the desired direction is between the two given vectors then it will

intersect a line drawn between the heads of the two vectors.

V

u Q

R
W

Cell with vectors

Desired Direction _ v

Vector
__ Not Between

Desired Direction
Vector

Between

Figure 3: Betweeness test for edge PQ.

A line between the heads of the two vectors u and v transposed to a common tail is

used in a way analogous to the number line in the linear interpolation for scalar

values in figure 3. The intersection point between the line and the desired direction

vector is used to determine the ratio of distances between P, Q and a point with the
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desired direction vector value (figure 4).

v

d

u Q

• 'i d il

"i

'i
Desired Direction

Figure 4: Interpolation to find cell edge - isodirection line intersection point.

An piecewise-linear approximation of an isodirection line for a particular direction in

a two-dimensional vector field can be drawn connecting the cell - isodirection line

intersection points. In figure 5, a triangular cell with vectors at points P, Q, and R is

given. The betweeness test is used on the vector pairs for each edge of the triangular

cell. In this example, the desired direction vector, d, lies between v - w and u - w.

This means that the isodirection line for d intersects the triangular cell in two

locations. The intersecting locations are found on the edges by interpolation and an
approximate isodirection line is drawn.

Isodirection line through triangle

u Q v _ d_v

R 1R

W W W

Original cell with vectors Betweeness test Added isodirection line with vectors

Figure 5: Isodirection line construction on triangular cell.

As in the algorithm for construction isoscalar contour lines, a vector field sampled at

the vertices of a curvilinear grid is divided into triangular cells for isodirection line

construction. Since interpolation along the common edge of two adjacent triangular

cells will result in the same location, the line segments will align to form a curve
which spans multiple cells.

Figure 6 shows various visual representations of a two-dimensional subset of the
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a: Voctors displayed as arrows on subset of data (.r-_O nodes), b: Isodirecfion line_ with vecto]._ chsplayed sLs alTOWS

J /f

f_

c: Inte_'al curves with inJl_l i)oinl_ at cro_s I_{irs d: Isodiroctlon line; with direcl_on icon.

Figure 6: Subsel of two dimension_J flow about a c)4inder.





data produced by the numerical simulation of flow past a tapered cylinder [10].

Figure 6a displays the vectors as arrows with the tail end of the arrow on the

sampled vertex of the curvilinear grid. The arrows are oriented in the direction and

proportional to the magnitude of the sampled vector.

In figure 6b isodirection lines are added to the sampled vectors together with the

arrows indicating the direction the isodirection line represents. The lines are color

coded by direction. Six integral curves are drawn over the same subset of the data in

figure 6c. Figure 6d displays the isodirection lines only.

4. Two-Dimensional Critical Point Location

A critical point is a location in the vector field where the magnitude of the vector

vanishes. Each component of the vector at the critical point equals zero. One way to

approximate the position of a critical point in two dimensions is to find the location

where isoscalar contour lines for vx = 0 and Vy = 0 intersect.

Step 1:

Step 2:

Step 3:

Step 4:

Divide the curvilinear grid into triangular cells.

Test if the cell contains a critical point.

If the cell contains a critical point, find isoscalar contour lines for v x

= 0 and Vy = 0 for the cell.
Solve the system of linear equations for the two isoscalar contour

lines to find the position of the critical point.

Figure 7a-b shows an example of the location of a critical point within a triangular

cell. Figure 7a shows the vectors at the vertices of the cell projected to the x and y

axes. These projections are used to find the intersections of the cell edge and the

isoscalar contour lines for v x = 0 and Vy = O. The intersection of the two contour
lines at the critical point is shown in figure 7b.

Figure 7c-d shows the construction of isodirection lines for four compass directions,

x, -x, y, and -y. Figure 7c shows the interpolation to find the cell edge - isodirection

line intersection points for the four directions (see figure 4). Isodirection lines are

defined as including points where the magnitude of the vector is zero (critical points).

The four isodirection lines are drawn in figure 7d showing the connection of the edge-

isodirection line intersections and the critical point. Vectors are drawn at the edge-
isodirection line intersection point to indicate the direction the isodirection line

represents.
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Y

V

u4
v x

a: Projection to x and y axes.

V

,_ x = 0 line

y=0

• U critical point

b: Location of critical point.

Y v

_W _._ __ Iod' ecti line

1o 1/¢
critical point

V-y

c: Vector interpolation for

directions x, -x, ¥, and -y.

d: Critical point and isodirection

lines for x, -x, ¥, and -¥.

Figure 7: Locating a two-dimensional critical point.

It was shown that for a direction vector to be between two given vectors it must

intersect a line drawn between the heads of the two given vectors (figure 3). If a

circle represents all possible two-dimensional directions, the gray arc on the circle in

figure 8a represents those directions which are between v and w. The directions of a

triangular cell are mapped to three overlapping arcs on the circle. These three arcs

double cover the arc between u and w. The heads of the three vectors of the

triangular cell transposed to a common tail form a small triangle (call it T). An

intersection between T and a direction vector corresponds to the isodirection line

intersection with the triangular cell (see figure 5). For a configuration such as in

figure 8b, any direction will intersect T in two places or not at all (except at the end

vertices). This means that if all three vectors lie in the same semicircle, the

isodirection line passes through the cell.

-8-



b:

4.

a: Directions between v and w mapped to circle.

T does not contain common tail.

No critical point is present.

c: T contains common tail.

There is a critical point in the cell.

Figure 8: Test for critical point in cell.

A special case is when T contains the common tail or equivalently, when the three

given vectors do not lie in the same semicircle (figure 8c). For this special case an

arbitrary direction vector will intersect T at one and only one location since T spans

all directions. This special case is indicative of the triangular cell containing a

critical point, assuming monotonic interpolation schemes are applied for values in

the cell interior. A simple test to determine whether the three vectors of a cell lie in

a semicircle also determines the presence of a critical point.

Referring back to figure 6, note the presence of two critical points where the

isodirection lines converge in figure 6d. A vortex center and a saddle center is

illustrated by the integral curves in figure 6c. The positions of the vortex center and

saddle center are in the same positions as the critical points located with the

isodirection lines in figure 6d.
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5. Three-dimensional Isodirection Line Construction

For a vector field in R 3, V(x, y, z), and a normalized direction vector,

an isodirection line is defined as the set of points

V(x,y,z) = (mn 1,mn 2,mn3),where m>O.

(n 1, n 2, n 3) ,
satisfying

The construction of an isodirection line in three dimensions is similar to its

construction in two dimensions. For three dimensions, intersection points of the
isodirection line with the faces of a tetrahedral cell are found rather than with a

triangular cell. Given a vector field sampled over a three-dimensional curvilinear

grid and a direction vector, for construction of an isodirection line:

Step 1: Divide the curvilinear grid into tetrahedral cells.

Step 2: Test if the desired direction is between the directions of the vectors
at the vertices of each face of each tetrahedral cell.

Step 3: If the desired direction is between the directions of the vectors at the

vertices of a cell face, use interpolation to find the location on the cell
face which is of the desired direction. This location is a face -

isodirection line intersection point.

Step 4: Draw a line between the face - isodirection line intersections found
in each cell.

u QV

Figure 9: Is a vector in the direction ofd

on this triangular face of a tetrahedral cell?

In step 2 a betweeness test is applied to determine whether the desired direction

vector, d, lies between the vectors at the vertices of a tetrahedral face, u, v, and w

(figure 9). The vectors are transposed to a common tail. A vector in the desired

direction lies in the tetrahedral face if d intersects a triangle formed by the heads of

u, v, and w (figure 10a).

To find out if d intersects a triangle formed by the heads of u, v, and w a series of

tests are performed to determine is the head of d is corralled by the planes formed by

pairs of given vectors. In order for d to be between u, v, and w, the head of d and the

head of one given vector must be on the same side of the plane formed by the two

other given vectors. In figure 10b, after transposing the vectors to a common tail, a

plane is formed by vectors u and v. The heads of both the third given vector, w, and

the desired direction vector, d, are on the same side of the plane uv.
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d

__.."_.__il_!i//i_ w
U ......_._ii_ _i..,..#_:_.' ......

a: d between vectors u, v, and w. b: d and w on same side of plane uv.

Figure 10: Betweeness test.

'l_vo more tests in this example would be made to show that the heads o[v and d are

on the same side of the plane formed by u and w, and that the heads ofu and d are on

the same side of the plane formed by v and w. If all three tests are true then d will

intersect a triangle formed by the heads of u, v, and w.

Once it has been determined that the desired vector lies between the vectors

associated with the vertices of the face of the tetrahedra, it remains to find the
location of the vector on the face that is in the desired direction. The location of the

intersection between the desired direction vector and the triangle formed by the

heads of u, v, and w as in the above diagram is used with bilinear interpolation to

locate a point on the face of the tetrahedra.

Two points are used for the interpolation, X o and X 1, which are each found by

finding the intersection of three planes. In figure lla the three planes whose

intersection is at X 1 are the planes formed by d and w, d and u and the heads of u, v,

and w. In figure llb the three planes whose intersection is at X 0 are the planes

formed by d and w, u and v, and the heads of u, v, and w.

Xo
::,.,.

a: Three planes intersecting at X 1 . b: Three planes intersecting at X o.

Figure 11: Intersection of planes.

The plane intersection points are determined by solving the system of linear

equations for the three planes. The ratio of the distance from the head of u to X 0 to

the distance from the head of u to the head of v is used to linearly interpolate along

the P-O edge of the tetrahedral face (call it Xo). The ratio of the distance from X o to

X 1 to the distance from X o to the head ofw is used to linearly interpolate along the
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line from R to x o (figure 12).

u d Uxo. J

R

Figure 12: Location of vector in the direction of d on tetrahedral face.

All four faces of the tetrahedra are tested for intersection with the isodirection line

as above. When the isodirection line intersects the tetrahedra, the usual case is to

find two faces with intersection points. A line drawn between these two points is the

approximate isodirection line through the tetrahedra (figure 13).
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t
Tetrahedra with associated vectors

V

ii

R

Desired direction vector intersects triangles formed by the heads
of the vectors associated with two faces of the tetrahedra

tu w
t t

o intersection with these two faces_
u d__ u _ w

Q d d

P
Isodirection line in interior of the tetrahedra
with endpoints on two faces

R

Figure 13: Isodirection line for d constructed for tetrahedral cell.

-13-



6. Three-Dimensional Critical Point Location

Each component of the critical point vector is equal to zero. One way of locating the

approximate position of a critical point in three dimensions is to find the location

where isoscalar surfaces for v_ = 0, v. = 0, and v_ = 0 intersect. Given a vector field
A y

sampled over a three-dimensional curvilinear grid, for critical point location:

Step 1:

Step 2:

Step 3:

Step 4:

Divide the curvilinear grid into tetrahedral cells.

Test if the cell contains a critical point.

If the cell contains a critical point, find isoscalar surfaces for v x = O,

v. = 0, and vz = 0 for the cell.
S_olve the system of linear equations for the three isoscalar surfaces

to find the position of the critical point.

Figure 14 shows an example of the location of a critical point within a tetrahedral

cell The planar isosurfaces for v = 0, v = 0, and vz = 0 are found using a variation" x y.
of the marching cubes algorithm for tetrahedra.

U U

t t

V V

W W

U

t _ _.

x=O

V

Critical Point

Figure 14: Locating a critical point in three dimensions.
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It was shown that for a three-dimensional vector to be between three other three-
dimensional vectors it must intersect a triangle formed by the heads of the three
vectors transposed to a common tail (figure 10). If a sphere represents all possible
three-dimensional directions, then the gray patch in figure 15a represents all of the
directions between u, v, and w. The directions of a tetrahedral cell are mapped to

four overlapping patches on the sphere. These four patches form a double-covered

four-sided patch, such that, except for boundaries each point on the four sided patch

is in two of the triangular patches (figure 15b). The heads of the four vectors of the

tetrahedral cell transposed to a common tail form a small tetrahedra (call it T). The

intersection of a direction vector transposed to the common tail and T, corresponds to

the isodirection line intersection with the tetrahedral cell. For a configuration such

as in figure 15b, any direction will intersect T in two places or not at all. This means

that if all four vectors lie in the same hemisphere, the isodirection line passes

through the cell.

U

b:

a: Directions between u, v and w mapped to a sphere.

;i _)/I i_IIII_

¸

T does not contain common tail.

No critical point is present.

I
IW

c: T contains common tail.

There is a critical point in the cell.

Figure 15: Test for critical point in cell.

A special case is when T contains the common tail or equivalently, when the four

direction vectors do not lie in the same hemisphere (figure 15c). For this special case

an arbitrary direction vector will intersect T in one and only one location since T

spans all directions. This special case is indicative of the tetrahedral cell containing
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a critical point, assuming monotonic interpolation schemes are applied for values in
the cell interior. A simple test to determine whether the four vectors of a cell lie in a
hemisphere also determines the presence of a critical point.

7. Results

Several CFD flow solution data sets have been examined using isodirection lines,

including flow past a tapered cylinder [10], a hemisphere cylinder [24], a NASA

space shuttle orbiter [17], and a shuttle engine liquid oxygen posts [18].

The tapered cylinder data has been used to study unsteady flow in three-dimensions.

The visualization of unsteady flow using isodirection lines shows the changes in the

velocity vector field over time. Figure 16a shows isodirection lines for 128 directions

for the velocity vector field of a two-dimensional cross section of the three

dimensional data. Figure 16b shows a time sequence for a small subset of the two-

dimensional cross section (the subset was also used in figure 6). A spiral attracting

focus (vortex) and a saddle critical point are shown to be at opposite ends of several
isodirection lines. The direction in red is the free stream direction. The blue and

yellow isodirection lines delineate the back flow region. As the sequence proceeds

the two critical points move downstream and the back flow region recedes. Finally

the critical points merge and annihilate each other as the downstream-directed

(vectors with positive x components) isodirection line segments (red, orange and

violet) connect. This example highlights the ability of isodirection lines for two-

dimensional vector fields to delineate regions where the vectors have a common

direction characteristic.

The isodirection line construction and critical point location algorithms for three-

dimensions described above have been implemented and added to a developing

visualization system using SuperGlue. SuperGlue [9] is a Scheme (a dialect of LISP)

interpreter and pre-defined class hierarchy, which serves as a platform for the

development of CFD visualization applications. This system was used to produce

figures 17 and 18.

Figure 17 shows three views of thirty-two isodirection lines of the velocity vector

field for flow past a hemisphere cylinder. The directions of the isodirection lines are

color coded to the directions represented in the small icons (the directions are chosen

in to form a cone with the axis of the cone equal to the free stream direction). This

collection of vectors circumscribes a region similar to what was done in the two-

dimensional example above. A more effective visualization would be to construct a
surface from collections of isodirection lines.

The topology of flow past a hemisphere cylinder has been studied by several groups

[4, 7, 24]. The critical point positions located using the algorithm in described in

section 6 have been found to be in general agreement with those found using TOPO

[4]. Differences can be attributed to the difference in numerical methods employed.
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Figure 17: Three-dimensional flow past a hemisphere cylinder.
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Figure 18: Three-dimensional flow past a tapered cylinder.
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Integral curves initiated near critical points and isodirection line groupings can be

used to reinforce the visual image of the flow dynamics. Figure 18 shows

isodirection lines and integral curves depicting the topology of the velocity vector

field for flow past a tapered cylinder. The image in the top left of figure 18 shows the

isodirection lines for four orthogonal cross flow directions. The image in the top let_

of figure 18 shows several integral curves placed near interesting features delineated

by the isodirection lines. The two images at the bottom of figure 18 show two
isodirection lines intersecting at a critical point (the transition from red to blue in

the bottom left image). Two integral curves with initial points at the cross-hairs are

drawn showing the complex structure of the flow near the critical point. This

example illustrates the capability of isodirection lines and critical points to guide the

placement of the initial points of integral curves to portray interesting
characteristics of a vector field.

8. Conclusions

This paper describes algorithms to construct isodirection lines for vector fields

sampled over two- and three-dimensional curvilinear grids. This paper also
describes algorithms for finding the critical points of these vector fields.

The goal of visualization is to use the pattern recognition capabilities of the visual

sense to extract meaning from complex data. Visualization techniques have been

applied to understand the topology of vector fields with varying degrees of success.

Isodirection lines, critical points and integral curves are complementary

visualization techniques, which can be used to effectively characterize interesting
features of vector fields.

9. Acknowledgments

The author would like to thank Dan Asimov, Eric Barszcz, Jeff Hultquist, Tom
Lasinski, Creon Levit, A1 Globus, and Eric Raible for their technical advice. The

author would also like to thank E. Lisette Gerald-Yamasaki, Jeff Hultquist, and Eric

Raible for reviewing early versions of this paper and suggesting numerous
improvements to the final presentation.

10. References

[1] Bryson, S. and Levit, C. The virtual windtunnel: An environment for the

exploration of three-dimensional unsteady flows. In Proceedings Visualization

'91 (San Diego, Oct. 22-25, 1991)Los Alamitos: IEEE Computer Society Press,
17-24.

[2] DeFanti, T. A., Brown, M. D., and McCormick, B. H. Visualization - Expanding

-17-



[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

scientific and engineering research opportunities. Computer 22, 8 (Aug. 1989),

12-25.

Globus, A. Octree optimization. Proc. of SPIE Conf. on Extracting Meaning

From Complex Data: Processing, Display, Interaction II (San Jose, CA., Feb.

26-28, 1991), 2-10.

Globus, A., Levit, C., and Lasinski, T. A tool for visualizing the topology of

three-dimensional vector fields. In Proceedings Visualization '91 (San Diego,

Oct. 22-25, 1991)Los Alamitos: IEEE Computer Society Press, 33-40.

Helman, J. and Hesselink, L. Analysis and representation of complex

structures in separated flows. Proc. of SPIE Conf. on Extracting Meaning

From Complex Data: Processing, Display, Interaction II (San Jose, CA., Feb.

26-28, 1991), 88-96.

Helman, J. and Hesselink, L. Representation and display of vector field

topology in fluid flow data sets. Computer (Aug. 1989). 27-36.

Helman, J. and Hesselink, L. Surface representations of two- and three-

dimensional fluid flow topology. In Proceedings Visualization '90 (San

Francisco, Oct. 23-26, 1990)Los Alamitos: IEEE Computer Society Press, 6-13.

Hultquist, J. P. M. Interactive numerical flow visualization using stream

surfaces. NAS Applied Research Technical Report RNR-90-009 (Apr. 1990).

Hultquist, J. P. M. and Raible, E. L. SuperGlue: a visualization-programming

environment. (submitted to Visualization '92).

Jespersen, D. and Levit, C. Numerical simulation of flow past a tapered

cylinder. American Institute of Aeronautics and Astronautics (AIAA) paper

91-0751. AIAA 29th Aerospace Sciences Meeting. (Reno, Nevada, Jan. 7-10,

1991).

Kerlick, G. D. Isolev: a level surface cutting plane program for cfd data. NAS

Applied Research Technical Report RNR-89-006 (Jun. 1989).

Klassen, R. V. and Harrington, S. J. Shadowed hedgehogs: a technique for

visualizing 2d slices of 3d vector fields. In Proceedings Visualization '91 (San

Diego, Oct. 22-25, 1991)Los Alamitos: IEEE Computer Society Press, 148-153.

Lorenson, W. E. and Cline, H. E. Marching cubes: a high resolution 3d surface

construction algorithm. Computer Graphics 21, 4 (Jul. 1987), 163-169.

Murman, E. M. and Powell, K. G. Trajectory integration in vortical flows.

AIAA Journal 27, 7 (Jul. 1989), 962-964.

-18-



[15] Ning, P.and Hesselink, L. Adaptive isosurface generation in a distortion-rate
framework. Proc. of SPIE Conf. on Extracting Meaning From Complex Data:
Processing, Display, Interaction II (San Jose, CA., Feb. 26-28, 1991), 11-21.

[16] Rogers, S. E., Buning, P. G., and Merrit, F. J. Distributed interactive graphics
applications in computational fluid dynamics. Internat. J. Supercomput. Appl.

1, 4 (Winter 1987), 96-105.

[17] Rizk, Y. M. and Ben-Shmuel, S. Computation of the viscous flow around the

shuttle orbiter at low supersonic speeds. AIAA paper 85-0168. AIAA 23rd

Aerospace Sciences Meeting (Reno, Nevada, Jan. 14-17, 1985).

[18] Rogers, S., Kwak, D., and Kaul, U. A numerical study of three-dimensional

incompressible flow around multiple posts. AIAA paper 86-0353.

[19] Ross, S.L. Introduction to Ordinary Differential Equations. New York: John

Wiley & Sons, 1980, 396-398.

[20] Shu, C-F., Jain, R., and Quek, F. A linear algorithm for computing the phase

portraits of oriented textures. Proc. of SPIE Conf. on Pattern Recognition and

Image Processing (San Jose, CA., Feb. 26-28, 1991), 352-357.

[21] Wijk, J. J. van, Spot noise texture synthesis for data visualization. Computer

Graphics 25, 4 (Jul. 1991), 309-318.

[22] Wilhelms, J. and Van Gelder, A. Octrees for faster isosurface generation.

Computer Graphics 24(5) (Nov. 1990), 57-62.

[23] Wilhelms, J. and Van Gelder, A. Topological considerations in isosurface

generation. Computer Graphics 24(5) (Nov. 1990), 79-86.

[24] Ying, S., Schiff, L. and Steger, J. L. A numerical study of three-dimensional

separated flow past a hemishere cylinder. AIAA 19th Fluid Dynamics, Plasma

Dynamics and Lasers Conference (June, 1987). AIAA Paper 87-1207.

-19-




